AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Logothetis, I.; Diakogiannis, K.; Vidakis, N.
Interactive Learning Through Conversational Avatars and Immersive VR: Enhancing Diabetes Education and Self-Management Proceedings Article
In: X., Fang (Ed.): Lect. Notes Comput. Sci., pp. 415–429, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-303192577-1 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Chronic disease, Computer aided instruction, Diabetes Education, Diagnosis, E-Learning, Education management, Engineering education, Gamification, Immersive virtual reality, Interactive computer graphics, Interactive learning, Large population, Learning systems, NUI, Self management, Serious game, Serious games, simulation, Virtual Reality
@inproceedings{logothetis_interactive_2025,
title = {Interactive Learning Through Conversational Avatars and Immersive VR: Enhancing Diabetes Education and Self-Management},
author = {I. Logothetis and K. Diakogiannis and N. Vidakis},
editor = {Fang X.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105008266480&doi=10.1007%2f978-3-031-92578-8_27&partnerID=40&md5=451274dfa3ef0b3f1b39c7d5a665ee3b},
doi = {10.1007/978-3-031-92578-8_27},
isbn = {03029743 (ISSN); 978-303192577-1 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15816 LNCS},
pages = {415–429},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {Diabetes is a chronic disease affecting a large population of the world. Education and self-management of diabetes are crucial. Technologies such as Virtual Reality (VR) have presented promising results in healthcare education, while studies suggest that Artificial Intelligence (AI) can help in learning by further engaging the learner. This study aims to educate users on the entire routine of managing diabetes. The serious game utilizes VR for realistic interaction with diabetes tools and generative AI through a conversational avatar that acts as an assistant instructor. In this way, it allows users to practice diagnostic and therapeutic interventions in a controlled virtual environment, helping to build their understanding and confidence in diabetes management. To measure the effects of the proposed serious game, presence, and perceived agency were measured. Preliminary results indicate that this setup aids in the engagement and immersion of learners, while the avatar can provide helpful information during gameplay. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.},
keywords = {Artificial intelligence, Chronic disease, Computer aided instruction, Diabetes Education, Diagnosis, E-Learning, Education management, Engineering education, Gamification, Immersive virtual reality, Interactive computer graphics, Interactive learning, Large population, Learning systems, NUI, Self management, Serious game, Serious games, simulation, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Ly, C.; Peng, E.; Liu, K.; Qin, A.; Howe, G.; Cheng, A. Y.; Cuadra, A.
Museum in the Classroom: Engaging Students with Augmented Reality Museum Artifacts and Generative AI Proceedings Article
In: Conf Hum Fact Comput Syst Proc, Association for Computing Machinery, 2025, ISBN: 979-840071395-8 (ISBN).
Abstract | Links | BibTeX | Tags: Artifact or System, Child/parent, Children/Parents, Digitisation, Education/Learning, Engaging students, Engineering education, Field trips, Interactive learning, Learning experiences, Rich learning experiences, Students, Teachers', Teaching
@inproceedings{ly_museum_2025,
title = {Museum in the Classroom: Engaging Students with Augmented Reality Museum Artifacts and Generative AI},
author = {C. Ly and E. Peng and K. Liu and A. Qin and G. Howe and A. Y. Cheng and A. Cuadra},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005741934&doi=10.1145%2f3706599.3719787&partnerID=40&md5=08816dd8d41bc34a0dc2d355985e2cc4},
doi = {10.1145/3706599.3719787},
isbn = {979-840071395-8 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Conf Hum Fact Comput Syst Proc},
publisher = {Association for Computing Machinery},
abstract = {Museum field trips provide a rich learning experience for children. However, they are complex and expensive for teachers to organize. Fortunately, digitization of museum artifacts makes it possible to use museum resources within the classroom. Museum in the Classroom (MITC) explores how augmented reality (AR) and generative artificial intelligence (AI) can create an interactive learning experience around museum artifacts. This iPad app allows educators to select historical topics from a curated artifact library, generating AR-based exhibits that students can explore. MITC engages students through interactive AR artifacts, AI-driven chatbots, and AI-generated quiz questions, based on a real exhibition at the Cantor Arts Center at Stanford University. A formative study with middle schoolers (N = 20) demonstrated that the app increased engagement compared to traditional learning methods. MITC also fostered a playful and comfortable environment to interact with museum artifacts. Our findings suggest that combining AR and AI has the potential to enrich classroom learning and offer a scalable alternative to traditional museum visits. © 2025 Copyright held by the owner/author(s).},
keywords = {Artifact or System, Child/parent, Children/Parents, Digitisation, Education/Learning, Engaging students, Engineering education, Field trips, Interactive learning, Learning experiences, Rich learning experiences, Students, Teachers', Teaching},
pubstate = {published},
tppubtype = {inproceedings}
}
Gao, H.; Xie, Y.; Kasneci, E.
PerVRML: ChatGPT-Driven Personalized VR Environments for Machine Learning Education Journal Article
In: International Journal of Human-Computer Interaction, 2025, ISSN: 10447318 (ISSN).
Abstract | Links | BibTeX | Tags: Backpropagation, ChatGPT, Curricula, Educational robots, Immersive learning, Interactive learning, Language Model, Large language model, large language models, Learning mode, Machine learning education, Machine-learning, Personalized learning, Support vector machines, Teaching, Virtual Reality, Virtual-reality environment, Virtualization
@article{gao_pervrml_2025,
title = {PerVRML: ChatGPT-Driven Personalized VR Environments for Machine Learning Education},
author = {H. Gao and Y. Xie and E. Kasneci},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005776517&doi=10.1080%2f10447318.2025.2504188&partnerID=40&md5=c2c59be3d20d02c6df7750c2330c8f6d},
doi = {10.1080/10447318.2025.2504188},
issn = {10447318 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {International Journal of Human-Computer Interaction},
abstract = {The advent of large language models (LLMs) such as ChatGPT has demonstrated significant potential for advancing educational technologies. Recently, growing interest has emerged in integrating ChatGPT with virtual reality (VR) to provide interactive and dynamic learning environments. This study explores the effectiveness of ChatGTP-driven VR in facilitating machine learning education through PerVRML. PerVRML incorporates a ChatGPT-powered avatar that provides real-time assistance and uses LLMs to personalize learning paths based on various sensor data from VR. A between-subjects design was employed to compare two learning modes: personalized and non-personalized. Quantitative data were collected from assessments, user experience surveys, and interaction metrics. The results indicate that while both learning modes supported learning effectively, ChatGPT-powered personalization significantly improved learning outcomes and had distinct impacts on user feedback. These findings underscore the potential of ChatGPT-enhanced VR to deliver adaptive and personalized educational experiences. © 2025 Taylor & Francis Group, LLC.},
keywords = {Backpropagation, ChatGPT, Curricula, Educational robots, Immersive learning, Interactive learning, Language Model, Large language model, large language models, Learning mode, Machine learning education, Machine-learning, Personalized learning, Support vector machines, Teaching, Virtual Reality, Virtual-reality environment, Virtualization},
pubstate = {published},
tppubtype = {article}
}