AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Li, Y.; Pang, E. C. H.; Ng, C. S. Y.; Azim, M.; Leung, H.
Enhancing Linear Algebra Education with AI-Generated Content in the CityU Metaverse: A Comparative Study Proceedings Article
In: T., Hao; J.G., Wu; X., Luo; Y., Sun; Y., Mu; S., Ge; W., Xie (Ed.): Lect. Notes Comput. Sci., pp. 3–16, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-981964406-3 (ISBN).
Abstract | Links | BibTeX | Tags: Comparatives studies, Digital age, Digital interactions, digital twin, Educational metaverse, Engineering education, Generative AI, Immersive, Matrix algebra, Metaverse, Metaverses, Personnel training, Students, Teaching, University campus, Virtual environments, virtual learning environment, Virtual learning environments, Virtual Reality, Virtualization
@inproceedings{li_enhancing_2025,
title = {Enhancing Linear Algebra Education with AI-Generated Content in the CityU Metaverse: A Comparative Study},
author = {Y. Li and E. C. H. Pang and C. S. Y. Ng and M. Azim and H. Leung},
editor = {Hao T. and Wu J.G. and Luo X. and Sun Y. and Mu Y. and Ge S. and Xie W.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003632691&doi=10.1007%2f978-981-96-4407-0_1&partnerID=40&md5=c067ba5d4c15e9c0353bf315680531fc},
doi = {10.1007/978-981-96-4407-0_1},
isbn = {03029743 (ISSN); 978-981964406-3 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15589 LNCS},
pages = {3–16},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {In today’s digital age, the metaverse is emerging as the forthcoming evolution of the internet. It provides an immersive space that marks a new frontier in the way digital interactions are facilitated and experienced. In this paper, we present the CityU Metaverse, which aims to construct a digital twin of our university campus. It is designed as an educational virtual world where learning applications can be embedded in this virtual campus, supporting not only remote and collaborative learning but also professional technical training to enhance educational experiences through immersive and interactive learning. To evaluate the effectiveness of this educational metaverse, we conducted an experiment focused on 3D linear transformation in linear algebra, with teaching content generated by generative AI, comparing our metaverse system with traditional teaching methods. Knowledge tests and surveys assessing learning interest revealed that students engaged with the CityU Metaverse, facilitated by AI-generated content, outperformed those in traditional settings and reported greater enjoyment during the learning process. The work provides valuable perspectives on the behaviors and interactions within the metaverse by analyzing user preferences and learning outcomes. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.},
keywords = {Comparatives studies, Digital age, Digital interactions, digital twin, Educational metaverse, Engineering education, Generative AI, Immersive, Matrix algebra, Metaverse, Metaverses, Personnel training, Students, Teaching, University campus, Virtual environments, virtual learning environment, Virtual learning environments, Virtual Reality, Virtualization},
pubstate = {published},
tppubtype = {inproceedings}
}
2024
Gaudi, T.; Kapralos, B.; Quevedo, A.
Structural and Functional Fidelity of Virtual Humans in Immersive Virtual Learning Environments Proceedings Article
In: IEEE Gaming, Entertain., Media Conf., GEM, Institute of Electrical and Electronics Engineers Inc., 2024, ISBN: 979-835037453-7 (ISBN).
Abstract | Links | BibTeX | Tags: 3D modeling, Computer aided instruction, Digital representations, E-Learning, Engagement, fidelity, Immersive, Immersive virtual learning environment, Serious game, Serious games, Three dimensional computer graphics, Virtual character, virtual human, Virtual humans, Virtual instructors, Virtual learning environments, Virtual Reality, virtual simulation, Virtual simulations
@inproceedings{gaudi_structural_2024,
title = {Structural and Functional Fidelity of Virtual Humans in Immersive Virtual Learning Environments},
author = {T. Gaudi and B. Kapralos and A. Quevedo},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199517136&doi=10.1109%2fGEM61861.2024.10585535&partnerID=40&md5=bf271019e077b5e464bcd62b1b28312b},
doi = {10.1109/GEM61861.2024.10585535},
isbn = {979-835037453-7 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {IEEE Gaming, Entertain., Media Conf., GEM},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Central to many immersive virtual learning environments (iVLEs) are virtual humans, or characters that are digital representations, which can serve as virtual instructors to facilitate learning. Current technology is allowing the production of photo-realistic (high fidelity/highly realistic) avatars, whether using traditional approaches relying on 3D modeling, or modern tools leveraging generative AI and virtual character creation tools. However, fidelity (i.e., level of realism) is complex as it can be analyzed from various points of view referring to its structure, function, interactivity, and behavior among others. Given its relevance, fidelity can influence various aspects of iVLEs including engagement and ultimately learning outcomes. In this work-in-progress paper, we propose a study that will examine the effect of structural and functional fidelity of a virtual human assistant on engagement within a virtual simulation designed to teach the cognitive aspects (e.g., the steps of a procedure) of the heart auscultation procedure. © 2024 IEEE.},
keywords = {3D modeling, Computer aided instruction, Digital representations, E-Learning, Engagement, fidelity, Immersive, Immersive virtual learning environment, Serious game, Serious games, Three dimensional computer graphics, Virtual character, virtual human, Virtual humans, Virtual instructors, Virtual learning environments, Virtual Reality, virtual simulation, Virtual simulations},
pubstate = {published},
tppubtype = {inproceedings}
}
Williams, R.
Deep HoriXons - 3D Virtual Generative AI Assisted Campus for Deep Learning AI and Cybersecurity Proceedings Article
In: M., Blowers; B.T., Wysocki (Ed.): Proc SPIE Int Soc Opt Eng, SPIE, 2024, ISBN: 0277786X (ISSN); 978-151067434-9 (ISBN).
Abstract | Links | BibTeX | Tags: 3D virtual campus, AI and cybersecurity education, AI talent pipeline, ChatGPT digital tutor, CompTIA Security+, Computer aided instruction, Cyber security, Cyber-security educations, Cybersecurity, Deep learning, E-Learning, Immersive, Learning systems, Virtual campus, Virtual learning environments, Virtual Reality
@inproceedings{williams_deep_2024,
title = {Deep HoriXons - 3D Virtual Generative AI Assisted Campus for Deep Learning AI and Cybersecurity},
author = {R. Williams},
editor = {Blowers M. and Wysocki B.T.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196555361&doi=10.1117%2f12.3011374&partnerID=40&md5=ff7392a37a51044c79d4d2824c9cf46b},
doi = {10.1117/12.3011374},
isbn = {0277786X (ISSN); 978-151067434-9 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Proc SPIE Int Soc Opt Eng},
volume = {13058},
publisher = {SPIE},
abstract = {This abstract outlines two significant innovations in AI and cybersecurity education within the "Deep HoriXons" 3D virtual campus, addressing the urgent need for skilled professionals in these domains. First, the paper introduces "Deep HoriXons," an immersive 3D virtual learning environment designed to democratize and enhance the educational experience for AI and cybersecurity. This innovation is notable for its global accessibility and ability to simulate real-world scenarios, providing an interactive platform for experiential learning, which is a marked departure from traditional educational models. The second innovation discussed is the strategic integration of ChatGPT as a digital educator and tutor within this virtual environment. ChatGPT's role is pivotal in offering tailored, real-time educational support, making complex AI and cybersecurity concepts more accessible and engaging for learners. This application of ChatGPT is an innovation worth noting for its ability to adapt to individual learning styles, provide interactive scenario-based learning, and support a deeper understanding of technical subjects through dynamic, responsive interaction. Together, these innovations represent a significant advancement in the field of AI and cybersecurity education, addressing the critical talent shortage by making high-quality, interactive learning experiences accessible on a global scale. The paper highlights the importance of these innovations in creating a skilled workforce capable of tackling the evolving challenges in AI and cybersecurity, underscoring the need for ongoing research and development in this area. © 2024 SPIE.},
keywords = {3D virtual campus, AI and cybersecurity education, AI talent pipeline, ChatGPT digital tutor, CompTIA Security+, Computer aided instruction, Cyber security, Cyber-security educations, Cybersecurity, Deep learning, E-Learning, Immersive, Learning systems, Virtual campus, Virtual learning environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}