AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Shen, Y.; Li, B.; Huang, J.; Wang, Z.
GaussianShopVR: Facilitating Immersive 3D Authoring Using Gaussian Splatting in VR Proceedings Article
In: Proc. - IEEE Conf. Virtual Real. 3D User Interfaces Abstr. Workshops, VRW, pp. 1292–1293, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 979-833151484-6 (ISBN).
Abstract | Links | BibTeX | Tags: 3D authoring, 3D modeling, Digital replicas, Gaussian distribution, Gaussian Splatting editing, Gaussians, Graphical user interfaces, High quality, Immersive, Immersive environment, Interactive computer graphics, Rendering (computer graphics), Rendering pipelines, Splatting, Three dimensional computer graphics, User profile, Virtual Reality, Virtual reality user interface, Virtualization, VR user interface
@inproceedings{shen_gaussianshopvr_2025,
title = {GaussianShopVR: Facilitating Immersive 3D Authoring Using Gaussian Splatting in VR},
author = {Y. Shen and B. Li and J. Huang and Z. Wang},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005138672&doi=10.1109%2fVRW66409.2025.00292&partnerID=40&md5=9b644bd19394a289d3027ab9a2dfed6a},
doi = {10.1109/VRW66409.2025.00292},
isbn = {979-833151484-6 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Conf. Virtual Real. 3D User Interfaces Abstr. Workshops, VRW},
pages = {1292–1293},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Virtual reality (VR) applications require massive high-quality 3D assets to create immersive environments. Generating mesh-based 3D assets typically involves a significant amount of manpower and effort, which makes VR applications less accessible. 3D Gaussian Splatting (3DGS) has attracted much attention for its ability to quickly create digital replicas of real-life scenes and its compatibility with traditional rendering pipelines. However, it remains a challenge to edit 3DGS in a flexible and controllable manner. We propose GaussianShopVR, a system that leverages VR user interfaces to specify target areas to achieve flexible and controllable editing of reconstructed 3DGS. In addition, selected areas can provide 3D information to generative AI models to facilitate the editing. GaussianShopVR integrates object hierarchy management while keeping the backpropagated gradient flow to allow local editing with context information. © 2025 IEEE.},
keywords = {3D authoring, 3D modeling, Digital replicas, Gaussian distribution, Gaussian Splatting editing, Gaussians, Graphical user interfaces, High quality, Immersive, Immersive environment, Interactive computer graphics, Rendering (computer graphics), Rendering pipelines, Splatting, Three dimensional computer graphics, User profile, Virtual Reality, Virtual reality user interface, Virtualization, VR user interface},
pubstate = {published},
tppubtype = {inproceedings}
}
Pielage, L.; Schmidle, P.; Marschall, B.; Risse, B.
Interactive High-Quality Skin Lesion Generation using Diffusion Models for VR-based Dermatological Education Proceedings Article
In: Int Conf Intell User Interfaces Proc IUI, pp. 878–897, Association for Computing Machinery, 2025, ISBN: 979-840071306-4 (ISBN).
Abstract | Links | BibTeX | Tags: Deep learning, Dermatology, Diffusion Model, diffusion models, Digital elevation model, Generative AI, Graphical user interfaces, Guidance Strategies, Guidance strategy, Image generation, Image generations, Inpainting, Interactive Generation, Medical education, Medical Imaging, Simulation training, Skin lesion, Upsampling, Virtual environments, Virtual Reality
@inproceedings{pielage_interactive_2025,
title = {Interactive High-Quality Skin Lesion Generation using Diffusion Models for VR-based Dermatological Education},
author = {L. Pielage and P. Schmidle and B. Marschall and B. Risse},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001923208&doi=10.1145%2f3708359.3712101&partnerID=40&md5=639eec55b08a54ce813f7c1016c621e7},
doi = {10.1145/3708359.3712101},
isbn = {979-840071306-4 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Int Conf Intell User Interfaces Proc IUI},
pages = {878–897},
publisher = {Association for Computing Machinery},
abstract = {Malignant melanoma is one of the most lethal forms of cancer when not detected early. As a result, cancer screening programs have been implemented internationally, all of which require visual inspection of skin lesions. Early melanoma detection is a crucial competence in medical and dermatological education, and it is primarily trained using 2D imagery. However, given the intrinsic 3D nature of skin lesions and the importance of incorporating additional contextual information about the patient (e.g., skin type, nearby lesions, etc.), this approach falls short of providing a comprehensive and scalable learning experience. A potential solution is the use of Virtual Reality (VR) scenarios, which can offer an effective strategy to train skin cancer screenings in a realistic 3D setting, thereby enhancing medical students' awareness of early melanoma detection. In this paper, we present a comprehensive pipeline and models for generating malignant melanomas and benign nevi, which can be utilized in VR-based medical training. We use diffusion models for the generation of skin lesions, which we have enhanced with various guiding strategies to give educators maximum flexibility in designing scenarios and seamlessly placing lesions on virtual agents. Additionally, we have developed a tool which comprises a graphical user interface (GUI) enabling the generation of new lesions and adapting existing ones using an intuitive and interactive inpainting strategy. The tool also offers a novel custom upsampling strategy to achieve a sufficient resolution required for diagnostic purposes. The generated skin lesions have been validated in a user study with trained dermatologists, confirming the overall high quality of the generated lesions and the utility for educational purposes. © 2025 Copyright held by the owner/author(s).},
keywords = {Deep learning, Dermatology, Diffusion Model, diffusion models, Digital elevation model, Generative AI, Graphical user interfaces, Guidance Strategies, Guidance strategy, Image generation, Image generations, Inpainting, Interactive Generation, Medical education, Medical Imaging, Simulation training, Skin lesion, Upsampling, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Leininger, P.; Weber, C. J.; Rothe, S.
Understanding Creative Potential and Use Cases of AI-Generated Environments for Virtual Film Productions: Insights from Industry Professionals Proceedings Article
In: IMX - Proc. ACM Int. Conf. Interact. Media Experiences, pp. 60–78, Association for Computing Machinery, Inc, 2025, ISBN: 979-840071391-0 (ISBN).
Abstract | Links | BibTeX | Tags: 3-D environments, 3D reconstruction, 3D Scene Reconstruction, 3d scenes reconstruction, AI-generated 3d environment, AI-Generated 3D Environments, Computer interaction, Creative Collaboration, Creatives, Digital content creation, Digital Content Creation., Filmmaking workflow, Filmmaking Workflows, Gaussian distribution, Gaussian Splatting, Gaussians, Generative AI, Graphical user interface, Graphical User Interface (GUI), Graphical user interfaces, Human computer interaction, human-computer interaction, Human-Computer Interaction (HCI), Immersive, Immersive Storytelling, Interactive computer graphics, Interactive computer systems, Interactive media, Mesh generation, Previsualization, Real-Time Rendering, Splatting, Three dimensional computer graphics, Virtual production, Virtual Production (VP), Virtual Reality, Work-flows
@inproceedings{leininger_understanding_2025,
title = {Understanding Creative Potential and Use Cases of AI-Generated Environments for Virtual Film Productions: Insights from Industry Professionals},
author = {P. Leininger and C. J. Weber and S. Rothe},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105007976841&doi=10.1145%2f3706370.3727853&partnerID=40&md5=0d4cf7a2398d12d04e4f0ab182474a10},
doi = {10.1145/3706370.3727853},
isbn = {979-840071391-0 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {IMX - Proc. ACM Int. Conf. Interact. Media Experiences},
pages = {60–78},
publisher = {Association for Computing Machinery, Inc},
abstract = {Virtual production (VP) is transforming filmmaking by integrating real-time digital elements with live-action footage, offering new creative possibilities and streamlined workflows. While industry experts recognize AI's potential to revolutionize VP, its practical applications and value across different production phases and user groups remain underexplored. Building on initial research into generative and data-driven approaches, this paper presents the first systematic pilot study evaluating three types of AI-generated 3D environments - Depth Mesh, 360° Panoramic Meshes, and Gaussian Splatting - through the participation of 15 filmmaking professionals from diverse roles. Unlike commonly used 2D AI-generated visuals, our approach introduces navigable 3D environments that offer greater control and flexibility, aligning more closely with established VP workflows. Through expert interviews and literature research, we developed evaluation criteria to assess their usefulness beyond concept development, extending to previsualization, scene exploration, and interdisciplinary collaboration. Our findings indicate that different environments cater to distinct production needs, from early ideation to detailed visualization. Gaussian Splatting proved effective for high-fidelity previsualization, while 360° Panoramic Meshes excelled in rapid concept ideation. Despite their promise, challenges such as limited interactivity and customization highlight areas for improvement. Our prototype, EnVisualAIzer, built in Unreal Engine 5, provides an accessible platform for diverse filmmakers to engage with AI-generated environments, fostering a more inclusive production process. By lowering technical barriers, these environments have the potential to make advanced VP tools more widely available. This study offers valuable insights into the evolving role of AI in VP and sets the stage for future research and development. © 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.},
keywords = {3-D environments, 3D reconstruction, 3D Scene Reconstruction, 3d scenes reconstruction, AI-generated 3d environment, AI-Generated 3D Environments, Computer interaction, Creative Collaboration, Creatives, Digital content creation, Digital Content Creation., Filmmaking workflow, Filmmaking Workflows, Gaussian distribution, Gaussian Splatting, Gaussians, Generative AI, Graphical user interface, Graphical User Interface (GUI), Graphical user interfaces, Human computer interaction, human-computer interaction, Human-Computer Interaction (HCI), Immersive, Immersive Storytelling, Interactive computer graphics, Interactive computer systems, Interactive media, Mesh generation, Previsualization, Real-Time Rendering, Splatting, Three dimensional computer graphics, Virtual production, Virtual Production (VP), Virtual Reality, Work-flows},
pubstate = {published},
tppubtype = {inproceedings}
}
2018
Caggianese, Giuseppe; Gallo, Luigi; Neroni, Pietro
Exploring the Feasibility of Diegetic User Interfaces in Immersive Virtual Exhibitions within the Cultural Heritage Proceedings Article
In: 2018 14th International Conference on Signal-Image Technology Internet-Based Systems (SITIS), pp. 625–631, 2018.
Abstract | Links | BibTeX | Tags: Cultural heritage, Diegetic interface, Digital heritage, Graphical user interfaces, Three-dimensional displays, Virtual Reality
@inproceedings{caggianeseExploringFeasibilityDiegetic2018,
title = {Exploring the Feasibility of Diegetic User Interfaces in Immersive Virtual Exhibitions within the Cultural Heritage},
author = { Giuseppe Caggianese and Luigi Gallo and Pietro Neroni},
doi = {10.1109/SITIS.2018.00101},
year = {2018},
date = {2018-11-01},
booktitle = {2018 14th International Conference on Signal-Image Technology Internet-Based Systems (SITIS)},
pages = {625--631},
abstract = {In the last few years, modern immersive technology has been used to exploit new digital resources overcoming the limitations of conventional exhibitions proving to be an invaluable instrument capable of bridging the gap between the visitor and the cultural space. However, to promote visitor enjoyment and to enhance the learning process in relation to the cultural heritage, it is fundamental to propose the cultural data to the visitor in an appropriate way through interfaces that help to focus the visitor's attention on the work of art in question. With this aim, new graphical user interfaces should be designed, following a diegetic approach and so providing a more natural and immersive environment to the user. Inspired by the gaming industry, in which the diegetic transformation of graphical user interfaces has already been introduced, in this paper, we will analyze the opportunities offered by the diegetic approach and will evaluate its relevance to the cultural domain. We will highlight the issues related to the applicability of diegetic user interfaces to an immersive virtual exhibition by discussing the different types of cultural data that can be proposed to a visitor and how that should be fictionally integrated into the scene.},
keywords = {Cultural heritage, Diegetic interface, Digital heritage, Graphical user interfaces, Three-dimensional displays, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Caggianese, Giuseppe; Gallo, Luigi; Neroni, Pietro
Exploring the Feasibility of Diegetic User Interfaces in Immersive Virtual Exhibitions within the Cultural Heritage Proceedings Article
In: 2018 14th International Conference on Signal-Image Technology Internet-Based Systems (SITIS), pp. 625–631, 2018.
Abstract | Links | BibTeX | Tags: Cultural heritage, Diegetic interface, Digital heritage, Graphical user interfaces, Three-dimensional displays, Virtual Reality
@inproceedings{caggianese_exploring_2018,
title = {Exploring the Feasibility of Diegetic User Interfaces in Immersive Virtual Exhibitions within the Cultural Heritage},
author = {Giuseppe Caggianese and Luigi Gallo and Pietro Neroni},
doi = {10.1109/SITIS.2018.00101},
year = {2018},
date = {2018-11-01},
booktitle = {2018 14th International Conference on Signal-Image Technology Internet-Based Systems (SITIS)},
pages = {625–631},
abstract = {In the last few years, modern immersive technology has been used to exploit new digital resources overcoming the limitations of conventional exhibitions proving to be an invaluable instrument capable of bridging the gap between the visitor and the cultural space. However, to promote visitor enjoyment and to enhance the learning process in relation to the cultural heritage, it is fundamental to propose the cultural data to the visitor in an appropriate way through interfaces that help to focus the visitor's attention on the work of art in question. With this aim, new graphical user interfaces should be designed, following a diegetic approach and so providing a more natural and immersive environment to the user. Inspired by the gaming industry, in which the diegetic transformation of graphical user interfaces has already been introduced, in this paper, we will analyze the opportunities offered by the diegetic approach and will evaluate its relevance to the cultural domain. We will highlight the issues related to the applicability of diegetic user interfaces to an immersive virtual exhibition by discussing the different types of cultural data that can be proposed to a visitor and how that should be fictionally integrated into the scene.},
keywords = {Cultural heritage, Diegetic interface, Digital heritage, Graphical user interfaces, Three-dimensional displays, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}