AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Häfner, P.; Eisenlohr, F.; Karande, A.; Grethler, M.; Mukherjee, A.; Tran, N.
Leveraging Virtual Prototypes for Training Data Collection in LLM-Based Voice User Interface Development for Machines Proceedings Article
In: Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR, pp. 281–285, Institute of Electrical and Electronics Engineers Inc., 2025, ISBN: 979-833152157-8 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Behavioral Research, Data collection, Language Model, Large language model, large language models, Model-based OPC, Training data, User interface development, Virtual environments, Virtual Prototype, Virtual Prototyping, Virtual Reality, Voice User Interface, Voice User Interfaces, Wizard of Oz, Wizard-of-Oz Method
@inproceedings{hafner_leveraging_2025,
title = {Leveraging Virtual Prototypes for Training Data Collection in LLM-Based Voice User Interface Development for Machines},
author = {P. Häfner and F. Eisenlohr and A. Karande and M. Grethler and A. Mukherjee and N. Tran},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000344182&doi=10.1109%2fAIxVR63409.2025.00054&partnerID=40&md5=05fe014eddba395881575bec5d96ce15},
doi = {10.1109/AIxVR63409.2025.00054},
isbn = {979-833152157-8 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc. - IEEE Int. Conf. Artif. Intell. Ext. Virtual Real., AIxVR},
pages = {281–285},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {Voice User Interfaces (VUIs) are becoming increasingly valuable in industrial applications, offering hands-free control in complex environments. However, developing and validating VUIs for such applications faces challenges, including limited access to physical prototypes and high testing costs. This paper presents a methodology that utilizes virtual reality (VR) prototypes to collect training data for large language model (LLM)-based VUIs, allowing early-stage voice control development before physical prototypes are accessible. Through an immersive Wizard-of-Oz (WoZ) method, participants interact with a virtual reality representation of a machine, generating realistic, scenario-based conversational data. This combined WoZ and VR approach enables high-quality data collection and iterative model training, offering an effective solution that can be applied across various types of machine. Preliminary findings demonstrate the viability of VR in generating diverse and robust data sets that closely simulate real-world dialogs for voice interactions in industrial settings. © 2025 IEEE.},
keywords = {Artificial intelligence, Behavioral Research, Data collection, Language Model, Large language model, large language models, Model-based OPC, Training data, User interface development, Virtual environments, Virtual Prototype, Virtual Prototyping, Virtual Reality, Voice User Interface, Voice User Interfaces, Wizard of Oz, Wizard-of-Oz Method},
pubstate = {published},
tppubtype = {inproceedings}
}
Kim, Y.; Aamir, Z.; Singh, M.; Boorboor, S.; Mueller, K.; Kaufman, A. E.
Explainable XR: Understanding User Behaviors of XR Environments Using LLM-Assisted Analytics Framework Journal Article
In: IEEE Transactions on Visualization and Computer Graphics, vol. 31, no. 5, pp. 2756–2766, 2025, ISSN: 10772626 (ISSN).
Abstract | Links | BibTeX | Tags: adult, Agnostic, Article, Assistive, Cross Reality, Data Analytics, Data collection, data interpretation, Data recording, Data visualization, Extended reality, human, Language Model, Large language model, large language models, Multi-modal, Multimodal Data Collection, normal human, Personalized assistive technique, Personalized Assistive Techniques, recorder, Spatio-temporal data, therapy, user behavior, User behaviors, Virtual addresses, Virtual environments, Virtual Reality, Visual analytics, Visual languages
@article{kim_explainable_2025,
title = {Explainable XR: Understanding User Behaviors of XR Environments Using LLM-Assisted Analytics Framework},
author = {Y. Kim and Z. Aamir and M. Singh and S. Boorboor and K. Mueller and A. E. Kaufman},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105003815583&doi=10.1109%2fTVCG.2025.3549537&partnerID=40&md5=1085b698db06656985f80418cb37b773},
doi = {10.1109/TVCG.2025.3549537},
issn = {10772626 (ISSN)},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Visualization and Computer Graphics},
volume = {31},
number = {5},
pages = {2756–2766},
abstract = {We present Explainable XR, an end-to-end framework for analyzing user behavior in diverse eXtended Reality (XR) environments by leveraging Large Language Models (LLMs) for data interpretation assistance. Existing XR user analytics frameworks face challenges in handling cross-virtuality - AR, VR, MR - transitions, multi-user collaborative application scenarios, and the complexity of multimodal data. Explainable XR addresses these challenges by providing a virtuality-agnostic solution for the collection, analysis, and visualization of immersive sessions. We propose three main components in our framework: (1) A novel user data recording schema, called User Action Descriptor (UAD), that can capture the users' multimodal actions, along with their intents and the contexts; (2) a platform-agnostic XR session recorder, and (3) a visual analytics interface that offers LLM-assisted insights tailored to the analysts' perspectives, facilitating the exploration and analysis of the recorded XR session data. We demonstrate the versatility of Explainable XR by demonstrating five use-case scenarios, in both individual and collaborative XR applications across virtualities. Our technical evaluation and user studies show that Explainable XR provides a highly usable analytics solution for understanding user actions and delivering multifaceted, actionable insights into user behaviors in immersive environments. © 1995-2012 IEEE.},
keywords = {adult, Agnostic, Article, Assistive, Cross Reality, Data Analytics, Data collection, data interpretation, Data recording, Data visualization, Extended reality, human, Language Model, Large language model, large language models, Multi-modal, Multimodal Data Collection, normal human, Personalized assistive technique, Personalized Assistive Techniques, recorder, Spatio-temporal data, therapy, user behavior, User behaviors, Virtual addresses, Virtual environments, Virtual Reality, Visual analytics, Visual languages},
pubstate = {published},
tppubtype = {article}
}
2023
Suryavanshi, D. P.; Kaveri, P. R.; Kadlag, P. S.
Advancing Digital Transformation in Indian Higher Education Institutions Proceedings Article
In: Intell. Comput. Control Eng. Bus. Syst., ICCEBS, Institute of Electrical and Electronics Engineers Inc., 2023, ISBN: 979-835039458-0 (ISBN).
Abstract | Links | BibTeX | Tags: Augmented Reality, Data Analysis, Data collection, Data handling, Developing countries, Digital revolution, Digital transformation, E-Learning, Educational Institution, Educational institutions, Engineering education, High educations, Higher education institutions, Information analysis, Learning systems, Literature studies, Metadata, Primary data, Stakeholder, Stakeholders, Technology Adoption
@inproceedings{suryavanshi_advancing_2023,
title = {Advancing Digital Transformation in Indian Higher Education Institutions},
author = {D. P. Suryavanshi and P. R. Kaveri and P. S. Kadlag},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189153416&doi=10.1109%2fICCEBS58601.2023.10448947&partnerID=40&md5=8aff6f6dc84d011ed59e0f8cec9d9318},
doi = {10.1109/ICCEBS58601.2023.10448947},
isbn = {979-835039458-0 (ISBN)},
year = {2023},
date = {2023-01-01},
booktitle = {Intell. Comput. Control Eng. Bus. Syst., ICCEBS},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
abstract = {The paper focuses on advancing the use of Digital Transformation in Indian Higher Education Institutions, although India being a developing country it is important for the educational institution to practice transformation in various forms. The paper covers the detail literature study and conclude with various opinions that have been generated through primary data collection. The objective of the study is to identify the need of digital transformation for education environment by two major methods literature study and stakeholder data analysis. Technological expectation was also studied using questionnaires. The study also analyzed related studies that had been done in the past using the Vosviewer programme for the years 1980 to 2004 for Scopus dataset in order to understand the year-by-year publications, research articles, and book chapters in the subject of Digital Transformation in Higher Education. The majority of stakeholders concur that using digital transformation technologies like IoT, AI & ChatGpt, Generative AI, Augmented reality in higher education is essential for implementing NEP 2020 and successfully integrating digital technologies. The paper covers a detail discussion including literature review on various aspects of digital transformation in education institutes. It also covers opinion from various stakeholders to understand actual outcomes expected from the study which was conducted. The current study uses a mixed research methodology because the questionnaire includes both quantitative and qualitative questions. A sample of 40 respondents was collected, representing the four main stakeholders in education: students, faculty, businesspeople, and educationalists. The responses were analysed using the SPSS Percentage and mean. The newly adopted educational policy NEP 2020 encourages the use of technology and skill-based learning. The importance of technology in teaching and learning processes has been emphasized in numerous research papers in order to improve the teaching-learning process and its outcomes. The thorough assessment of the literature was carried out utilizing the VOS viewer to evaluate the pertinent studies and pinpoint any gaps. © 2023 IEEE.},
keywords = {Augmented Reality, Data Analysis, Data collection, Data handling, Developing countries, Digital revolution, Digital transformation, E-Learning, Educational Institution, Educational institutions, Engineering education, High educations, Higher education institutions, Information analysis, Learning systems, Literature studies, Metadata, Primary data, Stakeholder, Stakeholders, Technology Adoption},
pubstate = {published},
tppubtype = {inproceedings}
}