AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Guo, P.; Zhang, Q.; Tian, C.; Xue, W.; Feng, X.
Digital Human Techniques for Education Reform Proceedings Article
In: ICETM - Proc. Int. Conf. Educ. Technol. Manag., pp. 173–178, Association for Computing Machinery, Inc, 2025, ISBN: 979-840071746-8 (ISBN).
Abstract | Links | BibTeX | Tags: Augmented Reality, Contrastive Learning, Digital elevation model, Digital human technique, Digital Human Techniques, Digital humans, Education Reform, Education reforms, Educational Technology, Express emotions, Federated learning, Human behaviors, Human form models, Human techniques, Immersive, Innovative technology, Modeling languages, Natural language processing systems, Teachers', Teaching, Virtual environments, Virtual humans
@inproceedings{guo_digital_2025,
title = {Digital Human Techniques for Education Reform},
author = {P. Guo and Q. Zhang and C. Tian and W. Xue and X. Feng},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001671326&doi=10.1145%2f3711403.3711428&partnerID=40&md5=dd96647315af9409d119f68f9cf4e980},
doi = {10.1145/3711403.3711428},
isbn = {979-840071746-8 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {ICETM - Proc. Int. Conf. Educ. Technol. Manag.},
pages = {173–178},
publisher = {Association for Computing Machinery, Inc},
abstract = {The rapid evolution of artificial intelligence, big data, and generative AI models has ushered in significant transformations across various sectors, including education. Digital Human Technique, an innovative technology grounded in advanced computer science and artificial intelligence, is reshaping educational paradigms by enabling virtual humans to simulate human behavior, express emotions, and interact with users. This paper explores the application of Digital Human Technique in education reform, focusing on creating immersive, intelligent classroom experiences that foster meaningful interactions between teachers and students. We define Digital Human Technique and delve into its key technical components such as character modeling and rendering, natural language processing, computer vision, and augmented reality technologies. Our methodology involves analyzing the role of educational digital humans created through these technologies, assessing their impact on educational processes, and examining various application scenarios in educational reform. Results indicate that Digital Human Technique significantly enhances the learning experience by enabling personalized teaching, increasing engagement, and fostering emotional connections. Educational digital humans serve as virtual teachers, interactive learning aids, and facilitators of emotional interaction, effectively addressing the challenges of traditional educational methods. They also promote a deeper understanding of complex concepts through simulated environments and interactive digital content. © 2024 Copyright held by the owner/author(s).},
keywords = {Augmented Reality, Contrastive Learning, Digital elevation model, Digital human technique, Digital Human Techniques, Digital humans, Education Reform, Education reforms, Educational Technology, Express emotions, Federated learning, Human behaviors, Human form models, Human techniques, Immersive, Innovative technology, Modeling languages, Natural language processing systems, Teachers', Teaching, Virtual environments, Virtual humans},
pubstate = {published},
tppubtype = {inproceedings}
}
Casas, L.; Mitchell, K.
Structured Teaching Prompt Articulation for Generative-AI Role Embodiment with Augmented Mirror Video Displays Proceedings Article
In: S.N., Spencer (Ed.): Proc.: VRCAI - ACM SIGGRAPH Int. Conf. Virtual-Reality Contin. Appl. Ind., Association for Computing Machinery, Inc, 2025, ISBN: 979-840071348-4 (ISBN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Augmented Reality, Computer interaction, Contrastive Learning, Cultural icon, Experiential learning, Generative adversarial networks, Generative AI, human-computer interaction, Immersive, Pedagogical practices, Role-based, Teachers', Teaching, Video display, Virtual environments, Virtual Reality
@inproceedings{casas_structured_2025,
title = {Structured Teaching Prompt Articulation for Generative-AI Role Embodiment with Augmented Mirror Video Displays},
author = {L. Casas and K. Mitchell},
editor = {Spencer S.N.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85217997060&doi=10.1145%2f3703619.3706049&partnerID=40&md5=7141c5dac7882232c6ee8e0bef0ba84e},
doi = {10.1145/3703619.3706049},
isbn = {979-840071348-4 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Proc.: VRCAI - ACM SIGGRAPH Int. Conf. Virtual-Reality Contin. Appl. Ind.},
publisher = {Association for Computing Machinery, Inc},
abstract = {We present a classroom enhanced with augmented reality video display in which students adopt snapshots of their corresponding virtual personas according to their teacher's live articulated spoken educational theme, linearly, such as historical figures, famous scientists, cultural icons, and laterally according to archetypal categories such as world dance styles. We define a structure of generative AI prompt guidance to assist teachers with focused specified visual role embodiment stylization. By leveraging role-based immersive embodiment, our proposed approach enriches pedagogical practices that prioritize experiential learning. © 2024 ACM.},
keywords = {Artificial intelligence, Augmented Reality, Computer interaction, Contrastive Learning, Cultural icon, Experiential learning, Generative adversarial networks, Generative AI, human-computer interaction, Immersive, Pedagogical practices, Role-based, Teachers', Teaching, Video display, Virtual environments, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Ly, C.; Peng, E.; Liu, K.; Qin, A.; Howe, G.; Cheng, A. Y.; Cuadra, A.
Museum in the Classroom: Engaging Students with Augmented Reality Museum Artifacts and Generative AI Proceedings Article
In: Conf Hum Fact Comput Syst Proc, Association for Computing Machinery, 2025, ISBN: 979-840071395-8 (ISBN).
Abstract | Links | BibTeX | Tags: Artifact or System, Child/parent, Children/Parents, Digitisation, Education/Learning, Engaging students, Engineering education, Field trips, Interactive learning, Learning experiences, Rich learning experiences, Students, Teachers', Teaching
@inproceedings{ly_museum_2025,
title = {Museum in the Classroom: Engaging Students with Augmented Reality Museum Artifacts and Generative AI},
author = {C. Ly and E. Peng and K. Liu and A. Qin and G. Howe and A. Y. Cheng and A. Cuadra},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105005741934&doi=10.1145%2f3706599.3719787&partnerID=40&md5=08816dd8d41bc34a0dc2d355985e2cc4},
doi = {10.1145/3706599.3719787},
isbn = {979-840071395-8 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Conf Hum Fact Comput Syst Proc},
publisher = {Association for Computing Machinery},
abstract = {Museum field trips provide a rich learning experience for children. However, they are complex and expensive for teachers to organize. Fortunately, digitization of museum artifacts makes it possible to use museum resources within the classroom. Museum in the Classroom (MITC) explores how augmented reality (AR) and generative artificial intelligence (AI) can create an interactive learning experience around museum artifacts. This iPad app allows educators to select historical topics from a curated artifact library, generating AR-based exhibits that students can explore. MITC engages students through interactive AR artifacts, AI-driven chatbots, and AI-generated quiz questions, based on a real exhibition at the Cantor Arts Center at Stanford University. A formative study with middle schoolers (N = 20) demonstrated that the app increased engagement compared to traditional learning methods. MITC also fostered a playful and comfortable environment to interact with museum artifacts. Our findings suggest that combining AR and AI has the potential to enrich classroom learning and offer a scalable alternative to traditional museum visits. © 2025 Copyright held by the owner/author(s).},
keywords = {Artifact or System, Child/parent, Children/Parents, Digitisation, Education/Learning, Engaging students, Engineering education, Field trips, Interactive learning, Learning experiences, Rich learning experiences, Students, Teachers', Teaching},
pubstate = {published},
tppubtype = {inproceedings}
}
2024
Domenichini, D.; Bucchiarone, A.; Chiarello, F.; Schiavo, G.; Fantoni, G.
An AI-Driven Approach for Enhancing Engagement and Conceptual Understanding in Physics Education Proceedings Article
In: IEEE Global Eng. Edu. Conf., EDUCON, IEEE Computer Society, 2024, ISBN: 21659559 (ISSN); 979-835039402-3 (ISBN).
Abstract | Links | BibTeX | Tags: Adaptive Learning, Artificial intelligence, Artificial intelligence in education, Artificial Intelligence in Education (AIED), Conceptual Understanding, Educational System, Educational systems, Gamification, Generative AI, generative artificial intelligence, Learning Activity, Learning systems, Physics Education, Teachers', Teaching, Virtual Reality
@inproceedings{domenichini_ai-driven_2024,
title = {An AI-Driven Approach for Enhancing Engagement and Conceptual Understanding in Physics Education},
author = {D. Domenichini and A. Bucchiarone and F. Chiarello and G. Schiavo and G. Fantoni},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199035695&doi=10.1109%2fEDUCON60312.2024.10578670&partnerID=40&md5=4cf9f89e97664ae6d618a90f2dbc23e0},
doi = {10.1109/EDUCON60312.2024.10578670},
isbn = {21659559 (ISSN); 979-835039402-3 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {IEEE Global Eng. Edu. Conf., EDUCON},
publisher = {IEEE Computer Society},
abstract = {This Work in Progress paper introduces the design of an innovative educational system that leverages Artificial Intelligence (AI) to address challenges in physics education. The primary objective is to create a system that dynamically adapts to the individual needs and preferences of students while maintaining user-friendliness for teachers, allowing them to tailor their teaching methods. The emphasis is on fostering motivation and engagement, achieved through the implementation of a gamified virtual environment and a strong focus on personalization. Our aim is to develop a system capable of autonomously generating learning activities and constructing effective learning paths, all under the supervision and interaction of teachers. The generation of learning activities is guided by educational taxonomies that delineate and categorize the cognitive processes involved in these activities. The proposed educational system seeks to address challenges identified by Physics Education Research (PER), which offers valuable insights into how individuals learn physics and provides strategies to enhance the overall quality of physics education. Our specific focus revolves around two crucial aspects: concentrating on the conceptual understanding of physics concepts and processes, and fostering knowledge integration and coherence across various physics topics. These aspects are deemed essential for cultivating enduring knowledge and facilitating practical applications in the field of physics. © 2024 IEEE.},
keywords = {Adaptive Learning, Artificial intelligence, Artificial intelligence in education, Artificial Intelligence in Education (AIED), Conceptual Understanding, Educational System, Educational systems, Gamification, Generative AI, generative artificial intelligence, Learning Activity, Learning systems, Physics Education, Teachers', Teaching, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Arrigo, M.; Farella, M.; Fulantelli, G.; Schicchi, D.; Taibi, D.
A Task-Interaction Framework to Monitor Mobile Learning Activities Based on Artificial Intelligence and Augmented Reality Proceedings Article
In: L.T., De Paolis; P., Arpaia; M., Sacco (Ed.): Lect. Notes Comput. Sci., pp. 325–333, Springer Science and Business Media Deutschland GmbH, 2024, ISBN: 03029743 (ISSN); 978-303171706-2 (ISBN).
Abstract | Links | BibTeX | Tags: Activity-based, Adversarial machine learning, Analytic technique, Augmented Reality, Contrastive Learning, Federated learning, Generative AI, Interaction framework, Learning Activity, Learning analytic framework, Learning Analytics Framework, Learning experiences, Learning patterns, Mobile Learning, Teachers'
@inproceedings{arrigo_task-interaction_2024,
title = {A Task-Interaction Framework to Monitor Mobile Learning Activities Based on Artificial Intelligence and Augmented Reality},
author = {M. Arrigo and M. Farella and G. Fulantelli and D. Schicchi and D. Taibi},
editor = {De Paolis L.T. and Arpaia P. and Sacco M.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204618733&doi=10.1007%2f978-3-031-71707-9_26&partnerID=40&md5=8969f18ab0f10dcddf37e54265d10518},
doi = {10.1007/978-3-031-71707-9_26},
isbn = {03029743 (ISSN); 978-303171706-2 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15027 LNCS},
pages = {325–333},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {The complexity behind the analysis of mobile learning activities has requested the development of specifically designed frameworks. When students are involved in mobile learning experiences, they interact with the context in which the activities occur, the content they have access to, with peers and their teachers. The wider adoption of generative artificial intelligence introduces new interactions that researchers have to look at when learning analytics techniques are applied to monitor learning patterns. The task interaction framework proposed in this paper explores how AI-based tools affect student-content and student-context interactions during mobile learning activities, thus focusing on the interplay of Learning Analytics and Artificial Intelligence advances in the educational domain. A use case scenario that explores the framework’s application in a real educational context is also presented. Finally, we describe the architectural design of an environment that leverages the task interaction framework to analyze enhanced mobile learning experiences in which structured content extracted from a Knowledge Graph is elaborated by a large language model to provide students with personalized content. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.},
keywords = {Activity-based, Adversarial machine learning, Analytic technique, Augmented Reality, Contrastive Learning, Federated learning, Generative AI, Interaction framework, Learning Activity, Learning analytic framework, Learning Analytics Framework, Learning experiences, Learning patterns, Mobile Learning, Teachers'},
pubstate = {published},
tppubtype = {inproceedings}
}
Sikström, P.; Valentini, C.; Sivunen, A.; Kärkkäinen, T.
Pedagogical agents communicating and scaffolding students' learning: High school teachers' and students' perspectives Journal Article
In: Computers and Education, vol. 222, 2024, ISSN: 03601315 (ISSN).
Abstract | Links | BibTeX | Tags: Adversarial machine learning, Agents communication, Augmented Reality, Contrastive Learning, Federated learning, Human communications, Human-Machine Communication, Human-to-human communication script, Human–machine communication, Human–machine communication (HMC), pedagogical agent, Pedagogical agents, Scaffolds, Scaffolds (biology), Secondary education, Student learning, Students, Teachers', Teaching, User-centered design, User-centred, Virtual environments
@article{sikstrom_pedagogical_2024,
title = {Pedagogical agents communicating and scaffolding students' learning: High school teachers' and students' perspectives},
author = {P. Sikström and C. Valentini and A. Sivunen and T. Kärkkäinen},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85202198552&doi=10.1016%2fj.compedu.2024.105140&partnerID=40&md5=dfb4a7b6c1f6352c5cc6faac213e938f},
doi = {10.1016/j.compedu.2024.105140},
issn = {03601315 (ISSN)},
year = {2024},
date = {2024-01-01},
journal = {Computers and Education},
volume = {222},
abstract = {Pedagogical agents (PAs) communicate verbally and non-verbally with students in digital and virtual reality/augmented reality learning environments. PAs have been shown to be beneficial for learning, and generative artificial intelligence, such as large language models, can improve PAs' communication abilities significantly. K-12 education is underrepresented in learning technology research and teachers' and students' insights have not been considered when developing PA communication. The current study addresses this research gap by conducting and analyzing semi-structured, in-depth interviews with eleven high school teachers and sixteen high school students about their expectations for PAs' communication capabilities. The interviewees identified relational and task-related communication capabilities that a PA should perform to communicate effectively with students and scaffold their learning. PA communication that is simultaneously affirmative and relational can induce immediacy, foster the relationship and engagement with a PA, and support students' learning management. Additionally, the teachers and students described the activities and technological aspects that should be considered when designing conversational PAs. The study showed that teachers and students applied human-to-human communication scripts when outlining their desired PA communication characteristics. The study offers novel insights and recommendations to researchers and developers on the communicational, pedagogical, and technological aspects that must be considered when designing communicative PAs that scaffold students’ learning, and discusses the contributions on human–machine communication in education. © 2024 The Authors},
keywords = {Adversarial machine learning, Agents communication, Augmented Reality, Contrastive Learning, Federated learning, Human communications, Human-Machine Communication, Human-to-human communication script, Human–machine communication, Human–machine communication (HMC), pedagogical agent, Pedagogical agents, Scaffolds, Scaffolds (biology), Secondary education, Student learning, Students, Teachers', Teaching, User-centered design, User-centred, Virtual environments},
pubstate = {published},
tppubtype = {article}
}