AHCI RESEARCH GROUP
Publications
Papers published in international journals,
proceedings of conferences, workshops and books.
OUR RESEARCH
Scientific Publications
How to
You can use the tag cloud to select only the papers dealing with specific research topics.
You can expand the Abstract, Links and BibTex record for each paper.
2025
Mereu, J.
Using LLMs to enhance end-user development support in XR Proceedings Article
In: V., Paneva; D., Tetteroo; V., Frau; S., Feger; D., Spano; F., Paterno; S., Sauer; M., Manca (Ed.): CEUR Workshop Proc., CEUR-WS, 2025, ISBN: 16130073 (ISSN).
Abstract | Links | BibTeX | Tags: Artificial intelligence, Condition, Configuration, Development support, Development technique, End-User Development, End-Users, Event-condition-action, Event-Condition-Actions, Extended reality, Human computer interaction, Information Systems, Information use, Natural Language, Natural language processing systems, Natural languages, Rule, rules
@inproceedings{mereu_using_2025,
title = {Using LLMs to enhance end-user development support in XR},
author = {J. Mereu},
editor = {Paneva V. and Tetteroo D. and Frau V. and Feger S. and Spano D. and Paterno F. and Sauer S. and Manca M.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105008755984&partnerID=40&md5=bfaaa38c3bee309621426f8f35332107},
isbn = {16130073 (ISSN)},
year = {2025},
date = {2025-01-01},
booktitle = {CEUR Workshop Proc.},
volume = {3978},
publisher = {CEUR-WS},
abstract = {This paper outlines the center stage of my PhD research, which aims to empower non-developer users to create and customize eXtended Reality (XR) environments through End-User Development (EUD) techniques combined with the latest AI tools. In particular, I describe my contributions to the EUD4XR project, detailing both the work completed and the ongoing developments. EUD4XR seeks to support end-users in customizing XR content with the assistance of a Large Language Model (LLM)-based conversational agent. © 2025 Copyright for this paper by its authors.},
keywords = {Artificial intelligence, Condition, Configuration, Development support, Development technique, End-User Development, End-Users, Event-condition-action, Event-Condition-Actions, Extended reality, Human computer interaction, Information Systems, Information use, Natural Language, Natural language processing systems, Natural languages, Rule, rules},
pubstate = {published},
tppubtype = {inproceedings}
}
Carcangiu, A.; Manca, M.; Mereu, J.; Santoro, C.; Simeoli, L.; Spano, L. D.
Conversational Rule Creation in XR: User’s Strategies in VR and AR Automation Proceedings Article
In: C., Santoro; A., Schmidt; M., Matera; A., Bellucci (Ed.): Lect. Notes Comput. Sci., pp. 59–79, Springer Science and Business Media Deutschland GmbH, 2025, ISBN: 03029743 (ISSN); 978-303195451-1 (ISBN).
Abstract | Links | BibTeX | Tags: 'current, Automation, Chatbots, Condition, End-User Development, Extended reality, Human computer interaction, Immersive authoring, Language Model, Large language model, large language models, Rule, Rule-based approach, rules, User interfaces
@inproceedings{carcangiu_conversational_2025,
title = {Conversational Rule Creation in XR: User’s Strategies in VR and AR Automation},
author = {A. Carcangiu and M. Manca and J. Mereu and C. Santoro and L. Simeoli and L. D. Spano},
editor = {Santoro C. and Schmidt A. and Matera M. and Bellucci A.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105009012634&doi=10.1007%2f978-3-031-95452-8_4&partnerID=40&md5=67e2b8ca4bb2b508cd41548e3471705b},
doi = {10.1007/978-3-031-95452-8_4},
isbn = {03029743 (ISSN); 978-303195451-1 (ISBN)},
year = {2025},
date = {2025-01-01},
booktitle = {Lect. Notes Comput. Sci.},
volume = {15713 LNCS},
pages = {59–79},
publisher = {Springer Science and Business Media Deutschland GmbH},
abstract = {Rule-based approaches allow users to customize XR environments. However, the current menu-based interfaces still create barriers for end-user developers. Chatbots based on Large Language Models (LLMs) have the potential to reduce the threshold needed for rule creation, but how users articulate their intentions through conversation remains under-explored. This work investigates how users express event-condition-action automation rules in Virtual Reality (VR) and Augmented Reality (AR) environments. Through two user studies, we show that the dialogues share consistent strategies across the interaction setting (keywords, difficulties in expressing conditions, task success), even if we registered different adaptations for each setting (verbal structure, event vs action first rules). Our findings are relevant for the design and implementation of chatbot-based support for expressing automations in an XR setting. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.},
keywords = {'current, Automation, Chatbots, Condition, End-User Development, Extended reality, Human computer interaction, Immersive authoring, Language Model, Large language model, large language models, Rule, Rule-based approach, rules, User interfaces},
pubstate = {published},
tppubtype = {inproceedings}
}
2024
Liu, Z.; Zhu, Z.; Zhu, L.; Jiang, E.; Hu, X.; Peppler, K.; Ramani, K.
ClassMeta: Designing Interactive Virtual Classmate to Promote VR Classroom Participation Proceedings Article
In: Conf Hum Fact Comput Syst Proc, Association for Computing Machinery, 2024, ISBN: 979-840070330-0 (ISBN).
Abstract | Links | BibTeX | Tags: 3D Avatars, Behavioral Research, Classroom learning, Collaborative learning, Computational Linguistics, Condition, E-Learning, Human behaviors, Language Model, Large language model, Learning experiences, Learning systems, pedagogical agent, Pedagogical agents, Students, Three dimensional computer graphics, Virtual Reality, VR classroom
@inproceedings{liu_classmeta_2024,
title = {ClassMeta: Designing Interactive Virtual Classmate to Promote VR Classroom Participation},
author = {Z. Liu and Z. Zhu and L. Zhu and E. Jiang and X. Hu and K. Peppler and K. Ramani},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194868458&doi=10.1145%2f3613904.3642947&partnerID=40&md5=0592b2f977a2ad2e6366c6fa05808a6a},
doi = {10.1145/3613904.3642947},
isbn = {979-840070330-0 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Conf Hum Fact Comput Syst Proc},
publisher = {Association for Computing Machinery},
abstract = {Peer influence plays a crucial role in promoting classroom participation, where behaviors from active students can contribute to a collective classroom learning experience. However, the presence of these active students depends on several conditions and is not consistently available across all circumstances. Recently, Large Language Models (LLMs) such as GPT have demonstrated the ability to simulate diverse human behaviors convincingly due to their capacity to generate contextually coherent responses based on their role settings. Inspired by this advancement in technology, we designed ClassMeta, a GPT-4 powered agent to help promote classroom participation by playing the role of an active student. These agents, which are embodied as 3D avatars in virtual reality, interact with actual instructors and students with both spoken language and body gestures. We conducted a comparative study to investigate the potential of ClassMeta for improving the overall learning experience of the class. © 2024 Copyright held by the owner/author(s)},
keywords = {3D Avatars, Behavioral Research, Classroom learning, Collaborative learning, Computational Linguistics, Condition, E-Learning, Human behaviors, Language Model, Large language model, Learning experiences, Learning systems, pedagogical agent, Pedagogical agents, Students, Three dimensional computer graphics, Virtual Reality, VR classroom},
pubstate = {published},
tppubtype = {inproceedings}
}
Artizzu, V.; Carcangiu, A.; Manca, M.; Mattioli, A.; Mereu, J.; Paternò, F.; Santoro, C.; Simeoli, L.; Spano, L. D.
End-User Development for eXtended Reality using a multimodal Intelligent Conversational Agent Proceedings Article
In: N., Wang; A., Bellucci; C., Anthes; P., Daeijavad; J., Friedl-Knirsch; F., Maurer; F., Pointecker; L.D., Spano (Ed.): CEUR Workshop Proc., CEUR-WS, 2024, ISBN: 16130073 (ISSN).
Abstract | Links | BibTeX | Tags: Condition, Context, End-User Development, Event-condition-action, Extended reality, Immersive authoring, Language Model, Large language model, Meta-design, multimodal input, Multimodal inputs, Rule, rules, User interfaces
@inproceedings{artizzu_end-user_2024,
title = {End-User Development for eXtended Reality using a multimodal Intelligent Conversational Agent},
author = {V. Artizzu and A. Carcangiu and M. Manca and A. Mattioli and J. Mereu and F. Paternò and C. Santoro and L. Simeoli and L. D. Spano},
editor = {Wang N. and Bellucci A. and Anthes C. and Daeijavad P. and Friedl-Knirsch J. and Maurer F. and Pointecker F. and Spano L.D.},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85196077262&partnerID=40&md5=3d5f022f30a1f0e3e5e81133d07823b5},
isbn = {16130073 (ISSN)},
year = {2024},
date = {2024-01-01},
booktitle = {CEUR Workshop Proc.},
volume = {3704},
publisher = {CEUR-WS},
abstract = {In the past years, both the research community and commercial products have proposed various solutions aiming to support end-user developers (EUDevs), namely users without extensive programming skills, to build and customize XR experiences. However, current tools may not fully eliminate the potential for user errors or misunderstandings. In this paper, we present EUD4XR, a methodology consisting of an intelligent conversational agent to provide contextual help, to EUDevs, during the authoring process. The key characteristics of this agent are its multimodality, comprehending the user’s voice, gaze, and pointing, combined with the environment status. Moreover, the agent could also demonstrate concepts, suggest components, and help explain errors further to reduce misunderstandings for end-user developers of VR/XR. © 2024 Copyright for this paper by its authors.},
keywords = {Condition, Context, End-User Development, Event-condition-action, Extended reality, Immersive authoring, Language Model, Large language model, Meta-design, multimodal input, Multimodal inputs, Rule, rules, User interfaces},
pubstate = {published},
tppubtype = {inproceedings}
}
He, Z.; Li, S.; Song, Y.; Cai, Z.
Towards Building Condition-Based Cross-Modality Intention-Aware Human-AI Cooperation under VR Environment Proceedings Article
In: Conf Hum Fact Comput Syst Proc, Association for Computing Machinery, 2024, ISBN: 979-840070330-0 (ISBN).
Abstract | Links | BibTeX | Tags: Action Generation, Building conditions, Condition, Critical challenges, Cross modality, Human-AI Cooperation, Information presentation, Intention Detection, Language Model, Multi-modal, Purchasing, User interfaces, Virtual Reality
@inproceedings{he_towards_2024,
title = {Towards Building Condition-Based Cross-Modality Intention-Aware Human-AI Cooperation under VR Environment},
author = {Z. He and S. Li and Y. Song and Z. Cai},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85194829231&doi=10.1145%2f3613904.3642360&partnerID=40&md5=44d237a6e2a686af74ffb684ef887ab6},
doi = {10.1145/3613904.3642360},
isbn = {979-840070330-0 (ISBN)},
year = {2024},
date = {2024-01-01},
booktitle = {Conf Hum Fact Comput Syst Proc},
publisher = {Association for Computing Machinery},
abstract = {To address critical challenges in effectively identifying user intent and forming relevant information presentations and recommendations in VR environments, we propose an innovative condition-based multi-modal human-AI cooperation framework. It highlights the intent tuples (intent, condition, intent prompt, action prompt) and 2-Large-Language-Models (2-LLMs) architecture. This design, utilizes “condition” as the core to describe tasks, dynamically match user interactions with intentions, and empower generations of various tailored multi-modal AI responses. The architecture of 2-LLMs separates the roles of intent detection and action generation, decreasing the prompt length and helping with generating appropriate responses. We implemented a VR-based intelligent furniture purchasing system based on the proposed framework and conducted a three-phase comparative user study. The results conclusively demonstrate the system's superiority in time efficiency and accuracy, intention conveyance improvements, effective product acquisitions, and user satisfaction and cooperation preference. Our framework provides a promising approach towards personalized and efficient user experiences in VR. © 2024 Copyright held by the owner/author(s)},
keywords = {Action Generation, Building conditions, Condition, Critical challenges, Cross modality, Human-AI Cooperation, Information presentation, Intention Detection, Language Model, Multi-modal, Purchasing, User interfaces, Virtual Reality},
pubstate = {published},
tppubtype = {inproceedings}
}
Sehgal, V.; Sekaran, N.
Virtual Recording Generation Using Generative AI and Carla Simulator Proceedings Article
In: SAE Techni. Paper., SAE International, 2024, ISBN: 01487191 (ISSN).
Abstract | Links | BibTeX | Tags: Access control, Air cushion vehicles, Associative storage, Augmented Reality, Automobile driver simulators, Automobile drivers, Automobile simulators, Automobile testing, Autonomous Vehicles, benchmarking, Computer testing, Condition, Continuous functions, Dynamic random access storage, Formal concept analysis, HDCP, Language Model, Luminescent devices, Network Security, Operational test, Operational use, Problem oriented languages, Randomisation, Real-world drivings, Sailing vessels, Ships, Test condition, UNIX, Vehicle modelling, Virtual addresses
@inproceedings{sehgal_virtual_2024,
title = {Virtual Recording Generation Using Generative AI and Carla Simulator},
author = {V. Sehgal and N. Sekaran},
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213320680&doi=10.4271%2f2024-28-0261&partnerID=40&md5=37a924cf9beda31f2c23b3a2cdf575d2},
doi = {10.4271/2024-28-0261},
isbn = {01487191 (ISSN)},
year = {2024},
date = {2024-01-01},
booktitle = {SAE Techni. Paper.},
publisher = {SAE International},
abstract = {To establish and validate new systems incorporated into next generation vehicles, it is important to understand actual scenarios which the autonomous vehicles will likely encounter. Consequently, to do this, it is important to run Field Operational Tests (FOT). FOT is undertaken with many vehicles and large acquisition areas ensuing the capability and suitability of a continuous function, thus guaranteeing the randomization of test conditions. FOT and Use case(a software testing technique designed to ensure that the system under test meets and exceeds the stakeholders' expectations) scenario recordings capture is very expensive, due to the amount of necessary material (vehicles, measurement equipment/objectives, headcount, data storage capacity/complexity, trained drivers/professionals) and all-time robust working vehicle setup is not always available, moreover mileage is directly proportional to time, along with that it cannot be scaled up due to physical limitations. During the early development phase, ground truth data is not available, and data that can be reused from other projects may not match 100% with current project requirements. All event scenarios/weather conditions cannot be ensured during recording capture, in such cases synthetic/virtual recording comes very handy which can accurately mimic real conditions on test bench and can very well address the before mentioned constraints. Car Learning to Act (CARLA) [1] is an autonomous open-source driving simulator, used for the development, training, and validation of autonomous driving systems is extended for generation of synthetic/virtual data/recordings, by integrating Generative Artificial Intelligence (Gen AI), particularly Generative Adversarial Networks (GANs) [2] and Retrieval Augmented Generation (RAG) [3] which are deep learning models. The process of creating synthetic data using vehicle models becomes more efficient and reliable as Gen AI can hold and reproduce much more data in scenario development than a developer or tester. A Large Language Model (LLM) [4] takes user input in the form of user prompts and generate scenarios that are used to produce a vast amount of high-quality, distinct, and realistic driving scenarios that closely resemble real-world driving data. Gen AI [5] empowers the user to generate not only dynamic environment conditions (such as different weather conditions and lighting conditions) but also dynamic elements like the behavior of other vehicles and pedestrians. Synthetic/Virtual recording [6] generated using Gen AI can be used to train and validate virtual vehicle models, FOT/Use case data which is used to indirectly prove real-world performance of functionality of tasks such as object detection, object recognition, image segmentation, and decision-making algorithms in autonomous vehicles. Augmenting LLM with CARLA involves training generative models on real-world driving data using RAG which allows the model to generate new, synthetic instances that resemble real-world conditions/scenarios. © 2024 SAE International. All Rights Reserved.},
keywords = {Access control, Air cushion vehicles, Associative storage, Augmented Reality, Automobile driver simulators, Automobile drivers, Automobile simulators, Automobile testing, Autonomous Vehicles, benchmarking, Computer testing, Condition, Continuous functions, Dynamic random access storage, Formal concept analysis, HDCP, Language Model, Luminescent devices, Network Security, Operational test, Operational use, Problem oriented languages, Randomisation, Real-world drivings, Sailing vessels, Ships, Test condition, UNIX, Vehicle modelling, Virtual addresses},
pubstate = {published},
tppubtype = {inproceedings}
}